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Literature

Yoav Shoham, Kevin Leyton-Brown: Multiagent 
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, 2009

This lecture is only a teaser, we cover part of 
Chapters 1 and 2, but things get useful with game 
theory.

http://www.masfoundations.org/download.html


Some terminology

 agent: many definitions, many areas

 Intelligent agent: autonomous entity which 
observes and acts upon an environment and 
directs its activity towards achieving goals

 Biological, artificial

 Software agents, intelligent agents

 Types and features

 Agent architectures

 A fundamental concept in intelligent systems



Agent

 Control system

 Sensors

 Actuators

 Environment

 Autonomous: acts 
independently and makes 
its own decisions

 Social ability: can interact 
with other agents

 Reactivity: reacts to stimuli

 Proactivity: pursues its own 
goals and acts in its own 
(self-)interest



Multiagent systems

 Distributed program solving

 autonomous,

 flexible,

 collectively organized actions 

 (goal oriented).

 Examples: drones, kilobots, helicopters, boats 
etc, see any of the videos on this topic: 
an example

https://www.theguardian.com/technology/2015/sep/18/robot-swarms-drone-scientists-hive-mentality


Interactive environment

 agent percepts information

 actions affect the environment

 internet, game playing, robotics (e.g., robo-
soccer)



Autonomous and flexible

 Without explicit directives

 Control

 Model of the environment

 (learning from experience)

 Responsiveness, 

 Planning, goal oriented



Collective actions

 Interactions with agents and humans

 Goal oriented cooperation: strategies, 
negotiation, specialization

 Distributed, asynchronous

 Objects and agents



Applications

 Production

 Automatic process control

 Telecommunications

 Information management

 e-business

 Interactive games

 Services

 …



Types of agents

 reactive agents

 collaborative agents

 interface agents

 mobile agents

 information-gathering agents

 hybrid agents



Reactive agents

 Response according to pre-specified rules

 Mail sorter, spam filter, calendar management

 Learning and revision of rules



Goal oriented agents

 Following the goal

 Planning and search

 Tickets, products



Utility based agents

 Utility functions

 Goals and utility maximization, Multiobjective 
decision making

 Rationality (e.g., in games one can loose on 
purpose)

 Kahneman, Tversky: (A. 100% 3000, B. 80% 4000
C. 20 % 4000 D. 25% 3000), 



Interface agents

 Personal assistants,

 Learning

 Tutoring systems, preference learning in search



Mobile agents

 Physical and virtual mobility

 virus, supervision program



Information-gathering agents

 Internet, intranet, mail

 Precision, recall

 Learning

 Noisy data, data relevance



Collaborative agents

 Weakly interactive agents (ants, genetic 
algorithms)

 redundancy, parallelism



Agent architecture

 a blueprint for software agents and intelligent 
control systems, depicting the arrangement of 
components



Subsumption architecture

 Brooks, 1985, 

 intelligence without representation

 Multilevel

 Each level follows its own goal

 Higher levels can block lower levels



 Each level contains its own rules, e.g., if-then 
rules

 Adding new levels is easy

 Debugging is hard



BDI architecture

 BDI  (Belief Desire  Intention )

 planning

 Bold and cautious



Blackboard architecture

 Sharing common work area

 Specialization

 Coordination

 Threads



Mobile architecture

 Agent-based 
modeling software 
(many frameworks)

 Early example: 
Aglets, IBM 1990

 Java, serialization, 
sandbox



JADE

 JAVA Agent DEvelopment Framework 

 an open source platform for peer-to-peer agent 
based applications

 conforms to FIPA standard (Foundation for 
Intelligent Physical Agents) 

http://www.fipa.org/


Horizontal and vertical architectures



Environment

 Deterministic

 Nondeterministic



Learning agents

 Learning is an adaptation

 Multiagent learning

 Centralized

 Distributed



Robotic agents

 Complexity of real-world environment

 Risk management

 Industrial robots

 Robot explorers (Mars, autonomy, moving 
around, insects)



Robotics : Intelligent Systems view

 Testbed for intelligent systems



Taxonomy

 fixed (industrial, robotic hand
with several degrees of freedom)

 legs (1,2,4,6,8)



Taxonomy

 Wheels

 Underwater and amphibious (fish, crabs, worms)



Taxonomy

 Airborne (drones, quadropters, satellites)

 Polymorphic, swarms

 Physical and softbots



Sensors

 vision (electromagnetic waves)

 hearing (air )

 Taste and smell (chemical receptors)

 touch (pressure)

 echolocation (ultrasound)

 electroception (electric stimuli, current and field)

 magnetoception (detect magnetism, magnetic field)

 equilibrioception (balance, acceleration)

 thermoception (temperature)

 ...



Actuators

 Wheels, legs, motors, 

 Hands, grasps, 



Control system

 reactive

 Subsumption

 Neural networks, evolutionary approaches



Planning

 Essential component of intelligent behavior

 Anytime planning: always ready, but improves 
with time

 Cell decomposition

 Potential field

 Landmarks

 Visibility graph



Tools

 Robotic languages 

 Simulators

 Robot operating systems (ROS)



Distributed computing with agents

 Agents collaborate to achieve a common goal 
defined by central authority

 Autonomous agents, only local communication 

 The goal is to find a solution with global 
constraints

 The task: prepare an algorithm for the agents



An example: sensor network

 Limited 
computational 
resources

 Local 
communication

 Global 
constraints and 
solutions



Constraint satisfaction problem

 Set of variables with their domains and 
constraints on values taken by the variables

 The task: assign values to the variables satisfying 
all constraints or proclaim that there is no such 
an assignment

 Several applications: planning, vision, NLP, 
theorem proving, scheduling



An example: find non-overlapping 
frequencies for the sensors

 Three sensors

 Overlapping reach

 The task: assign non-
overlapping frequencies 
to the sensors from the 
domain of allowed 
frequencies



An example

 Equivalent to graph
coloring

 Set of variables X={ X1, X2, X3 }

 Domain Di for each variables is {red, blue, green}

 Set of constraints { X1 ≠ X2, X1 ≠ X3, X3 ≠ X2}



Constraint satisfaction terminology

 Variable assignment 

 Legal, illegal

 Solution

 Distributed constraint satisfaction: each agent is 
a variable, the solution is to be found without 
central control



Domain pruning algorithms

 Nodes communicate with neighbors to prune forbidden values 
from their domains

 arc consistency algorithm

 Each vertex Xi with domain Di repeatedly executes the 
program for each of its neighbors Xj

void revise(xi, xj ) {

foreach ( vi ∈ Di ) 
if (there is no value vj ∈ Dj such that vi  is consistent with vj)

Di = Di – {vi}

}



Arc consistency

 Stop when one of domains is empty (no 
solution), or no more eliminations takes place.

 If there is a single value left in each domain, we 
have a solution; otherwise the result is 
inconclusive: we do not know if the solution 
exists.

 Algorithm terminates and is sound (the solution 
if found, is correct), but it is not complete (no 
guarantee that the solution will be found).



An example of domain pruning a)

 First only messages to 
node X1 are efficient, 
therefore X2 and X3

eliminate value red

X2={blue} X3={blue, green}

 Next X3 can eliminate  
blue;

 The result is correct



An example of domain pruning b)

 As before X2 and X3

eliminate red

X2={blue} X3={blue}

 Next both X2 and X3

eliminate blue;

 Empty domain is left, so 
they proclaim there is no 
solution.



An example of domain pruning c), d)

 No node can eliminate any value

 Inconclusive termination



Equivalence to logic resolution

 Arc consistency is too weak, can be used as preprocessing

 Value elimination is equivalent to unit resolution in propositional 
logic 

 Inference rule 
A1
¬(A1A2 … An)

¬(A2 … An)

 We write constraints as forbidden value combinations called 
Nogoods, e.g., x1=red  x2=red

x1=red
¬(x1=red  x2=red)

¬(x2=red)



Hyper-resolution 

 A generalization of unit resolution
A1 ∨A2 ∨ · · · ∨Am
¬(A1 ∧A1,1 ∧A1,2 ∧ · · · )
¬(A2 ∧A2,1 ∧A2,2 ∧ · · · )
…
¬(Am ∧Am,1 ∧Am,2 ∧ · · · )


¬(A1,1 ∧ · · · ∧A2,1 ∧ · · · ∧Am,1 ∧ · · · )

 Sound and complete for propositional logic

 at least one of the literals in the top disjunction A1 ∨A2 ∨ · 
· · ∨Am is true, therefore the conjunction of all the 
remaining literals in the negated terms has to fail, too



Hyper-resolution algorithm

 each agent repeatedly generates new 
constraints for his neighbors, notifies them of 
these new constraints, and prunes his own 
domain based on new constraints passed to him 
by his neighbors.

 NGi is the set of all Nogoods of which agent i is 
aware

 NG∗
j is a set of new Nogoods communicated from 

agent j to agent i. 



void reviseHR(NGi, NG∗
j) {

do {
NGi ←NGi NG∗

j
NG∗

i ← hyperresolution(NGi , Di) 
if ( NG∗

i ≠ {} )
NGi ←NGi NG∗

i
send the Nogoods NG∗

i to all neighbours of i
if ( {} ∈ NG∗

i) 
stop

} while (there is a change  in NGi)

}

algoritem terminates after finite number of steps

If the solution exists, the algorithms finds it



Hyper-resolution for c)

 X1 has initially the following 
constraints in its Nogoods:
{x1 = red, x2 = red}, 
{x1 = red, x3 =red},
{x1 = blue, x2 = blue}, 
{x1 = blue, x3 = blue}

 X1 can be assigned values  x1 = red ∨ x1 = blue. 

 With hyper-resolution X1 can reason

x1 = red ∨ x1 = blue
¬(x1 = red ∧ x2 = red)
¬(x1 = blue ∧ x3 = blue)

¬(x2 = red ∧ x3 = blue) 

And adds constraints  {x2  = red, x3  = blue} to its  Nogoods



 Similarly it adds 
{x2 = blue, x3 = red} to its Nogoods

 x1 sends both Nogoods to its 
neighbors x2 and x3

 x2 can reason (based on its domain, Nogoods and received 
inferences)
x2 = red ∨ x2 = blue
¬(x2 = red ∧ x3 = blue)
¬(x2 = blue ∧ x3 = blue)

¬(x3 = blue)

 Based on the other received Nogood x2 constructs  ¬(x3 = red)

 When both Nogoods are send to the neighbor x3, x3 generates  {} and 
algorithms terminates proclaiming that no solution exists.

Hyper-resolution for c)



Weaknesses of hyper-resolution

 Number of generated Nogoods can be very large

 Asynchronous and parallel processing would 
generate even more Nogoods.

 The problem lies in the least-commitment nature of 
these algorithms; they are restricted to removing 
only provably impossible value combinations. 

 The alternative is to explore a subset of the space, 
making tentative value selections for variables, and 
backtracking when necessary.



Heuristic search with constraints

 Centralized trial and error

 Sort variables, e.g., x1, x2, . . . , xn

 Call  chooseValue(x1, {}), with values  {v1, v2, . . . , vi−1} already assigned to 
{x1, x2, . . . , xi−1} 



Weaknesses of chronological backtracking

 Exhaustive search

 Agents work sequentially



Naïve parallel asynchronous solution

 executed by all agents in parallel and asynchronously

Correct but incomplete solution: it may not terminate, it may not 
find a solution



Asynchronous backtracking

 We need stronger algorithms with ideas from before:
global order and message passing

 ABT (asynchronous backtracking )

 Agents are prioritized, messages pass from higher priority 
agents to lower priority agents

 Parallel execution

 Agents instantiate their variables concurrently and send their 
assigned values to the agents that are connected to them by 
outgoing links. All agents wait for and respond to messages. 
After each update of his assignment, an agent sends his new 
assignment along all outgoing links. An agent who receives an 
assignment (from the higher-priority agent of the link), tries 
to find an assignment for its variable that does not violate a 
constraint with the assignment it received



ABT communication

 Agent send messages ok? 

 Agents stores received values into his data structure 
agent_view

 agent checks if his current assignment is consisted with 
his agent_view.  

 If it is, the agent does nothing, otherwise it searchers for 
a new consistent value

 If the agent finds it,  it assigns the found value to a 
variable and sends ok? message to all connected lower 
priority agents

 If the agent does not find it, it starts backtracking



ABT - backtracking

 The backtrack operation is executed by sending a Nogood 
message.

 Nogood is an inconsistent partial assignment (assignments of 
specific values to some of the variables that together violate 
the constraints on those variables)

 Nogood consists of Ai’s agent_view

 The Nogood is sent to the agent with the lowest priority 
among the agents whose assignments are included in the 
inconsistent tuple in the Nogood. 

 Agent Ai who sends a Nogood message to agent Aj assumes 
that Aj will change its assignment. Therefore, Ai removes from 
his agent_view the assignment of Aj and tries to find an 
assignment for Aj’s variable that is consistent with the updated 
agent_view.



ABT properties

 Greedy hyper-resolution

 agents make tentative choices of a value for 
their variables, only generate Nogoods that 
incorporate values already generated by the 
agents above them in the order, 

 communicates new values only to some agents 
and new Nogoods to only one agent.



ABT communication



ABT check consistency



ABT backtracking



ABT for c)

 Priority x1, x2, x3

 They initially all start with a 
random value, e.g., all  “blue”

 x1 informs x2 and  x3, x2 informs x3

x2 adds to its agent_view  {x1=blue}, x3 adds  {x1=blue, x2=blue}. 

 x2 and x3 have to check consistency with their own value

 X2  detects conflict, modifies its value to  “red”  and informs  x3

 In that time x3 detects conflict , modifies its value to “red”, informs no one

 x3 receives second message from x2 and modifies its agent_view to {x1 = 
blue, x2 = red}.



Asynchronous 
backtracking for c)

 x3 cannot find consistent value
so using hyper-resolution it
generates Nogood {x1 = blue, x2 = red}

 Sends this Nogood to x2, because of lowest
priority in Nogood

 Now  x2 cannot find consistent values and generates  Nogood {x1 = blue} and 
sends it to  x1. 

 x1 detects inconsistency, modifies its value to “red” and informs x2 and x3

 As before, x2 modifies its value to blue, x3 cannot find consistent value and 
generates Nogood {x1 = red, x2 = blue}, 

 After that x2 generates Nogood {x1 = red} and sends it to x1

 Now x1 has Nogood {x1 = blue} and {x1 = red}, uses hyper-resolution to generate  
Nogood {}. Algorithm terminates by proclaiming that no solution exists.



Distributed Optimization

 agents shall, in a distributed fashion, optimize a global 
objective function

 We illustrate distributed path planning in directed graph 
with n nodes and m edges

 edge (a,b) has assigned a cost c(a,b); 

 objective: find a minimal cost path from the starting node s 
to any of the goal nodes t ∈ T. 

 Applications: transport, telecommunications, planning

 Difference to standard algorithms (Dijkstra, Bellman-Ford) 
is a distributed approach (agents communicate only locally, 
each agent contributes to the globally optimal solution)



Asynchronous dynamic programming

 dynamic programming (incremental divide and conquer) 

 if node x lies on a shortest path from s to t, then the 
portion of the path from s to x (and from x to t) must also 
be the shortest paths between s and x (x and t

 the shortest distance from any node i to the goal node t is 
represented with h∗(i).

 Shortest path from i  to t via neighboring node j
f ∗(i, j)  =  c(i, j)+h∗( j)

 Shortest path from i via arbitrary neighboring node 

h∗(i) = minj f ∗(i, j)



Algorithm details

 Every node i stores a value h(i), as an approximation 
to h∗(i)

 Initialization, each h(i)=∞,

 During execution, the h(i) values decrease and 
converge to the h∗(i)

 Convergence takes one step for every node on the  
shortest path

 Weakness: we need an agent for every node



Pseudo code ADP for shortest path 
executed on every node



ADP 1/4



ADP 2/4



ADP 3/4



ADP 4/4



LRTA∗

 Algorithm LRTA∗ (learning real-time A∗) uses one 
or more agents

 Heuristic search with improved heuristic

 Initialize: h(i)=0 (or any better informed 
admissible heuristics)

 Agent repeatedly executes an algorithm 
improving h(i)

 An example: a single agent execution



Pseudo code of LRTA*



An example:



One  LRTA* agent 1/4



One  LRTA* agent 2/4



One  LRTA* agent 3/4



One  LRTA* agent 4/4



LRTA*(2)  (two agents) 1/3



LRTA*(2)  (two agents) 2/3



LRTA*(2)  (two agents) 3/3



Multiagent technologies 

 Extensions to asynchronous backtracking

 Constraint satisfaction optimization

 Learning agents

 Game theory (cooperative and non-cooperative 
games



An exercise: simulate an execution of  
ADP and LRTA*


