
Intelligent agents

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja,
Intelligent Systems, January 2020

Contents

 types of agents and agent architectures

 multiagent learning

 distributed constraint satisfaction

 distributed shortest path finding

Literature

Yoav Shoham, Kevin Leyton-Brown: Multiagent
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, 2009

This lecture is only a teaser, we cover part of
Chapters 1 and 2, but things get useful with game
theory.

http://www.masfoundations.org/download.html

Some terminology

 agent: many definitions, many areas

 Intelligent agent: autonomous entity which
observes and acts upon an environment and
directs its activity towards achieving goals

 Biological, artificial

 Software agents, intelligent agents

 Types and features

 Agent architectures

 A fundamental concept in intelligent systems

Agent

 Control system

 Sensors

 Actuators

 Environment

 Autonomous: acts
independently and makes
its own decisions

 Social ability: can interact
with other agents

 Reactivity: reacts to stimuli

 Proactivity: pursues its own
goals and acts in its own
(self-)interest

Multiagent systems

 Distributed program solving

 autonomous,

 flexible,

 collectively organized actions

 (goal oriented).

 Examples: drones, kilobots, helicopters, boats
etc, see any of the videos on this topic:
an example

https://www.theguardian.com/technology/2015/sep/18/robot-swarms-drone-scientists-hive-mentality

Interactive environment

 agent percepts information

 actions affect the environment

 internet, game playing, robotics (e.g., robo-
soccer)

Autonomous and flexible

 Without explicit directives

 Control

 Model of the environment

 (learning from experience)

 Responsiveness,

 Planning, goal oriented

Collective actions

 Interactions with agents and humans

 Goal oriented cooperation: strategies,
negotiation, specialization

 Distributed, asynchronous

 Objects and agents

Applications

 Production

 Automatic process control

 Telecommunications

 Information management

 e-business

 Interactive games

 Services

 …

Types of agents

 reactive agents

 collaborative agents

 interface agents

 mobile agents

 information-gathering agents

 hybrid agents

Reactive agents

 Response according to pre-specified rules

 Mail sorter, spam filter, calendar management

 Learning and revision of rules

Goal oriented agents

 Following the goal

 Planning and search

 Tickets, products

Utility based agents

 Utility functions

 Goals and utility maximization, Multiobjective
decision making

 Rationality (e.g., in games one can loose on
purpose)

 Kahneman, Tversky: (A. 100% 3000, B. 80% 4000
C. 20 % 4000 D. 25% 3000),

Interface agents

 Personal assistants,

 Learning

 Tutoring systems, preference learning in search

Mobile agents

 Physical and virtual mobility

 virus, supervision program

Information-gathering agents

 Internet, intranet, mail

 Precision, recall

 Learning

 Noisy data, data relevance

Collaborative agents

 Weakly interactive agents (ants, genetic
algorithms)

 redundancy, parallelism

Agent architecture

 a blueprint for software agents and intelligent
control systems, depicting the arrangement of
components

Subsumption architecture

 Brooks, 1985,

 intelligence without representation

 Multilevel

 Each level follows its own goal

 Higher levels can block lower levels

 Each level contains its own rules, e.g., if-then
rules

 Adding new levels is easy

 Debugging is hard

BDI architecture

 BDI (Belief Desire Intention)

 planning

 Bold and cautious

Blackboard architecture

 Sharing common work area

 Specialization

 Coordination

 Threads

Mobile architecture

 Agent-based
modeling software
(many frameworks)

 Early example:
Aglets, IBM 1990

 Java, serialization,
sandbox

JADE

 JAVA Agent DEvelopment Framework

 an open source platform for peer-to-peer agent
based applications

 conforms to FIPA standard (Foundation for
Intelligent Physical Agents)

http://www.fipa.org/

Horizontal and vertical architectures

Environment

 Deterministic

 Nondeterministic

Learning agents

 Learning is an adaptation

 Multiagent learning

 Centralized

 Distributed

Robotic agents

 Complexity of real-world environment

 Risk management

 Industrial robots

 Robot explorers (Mars, autonomy, moving
around, insects)

Robotics : Intelligent Systems view

 Testbed for intelligent systems

Taxonomy

 fixed (industrial, robotic hand
with several degrees of freedom)

 legs (1,2,4,6,8)

Taxonomy

 Wheels

 Underwater and amphibious (fish, crabs, worms)

Taxonomy

 Airborne (drones, quadropters, satellites)

 Polymorphic, swarms

 Physical and softbots

Sensors

 vision (electromagnetic waves)

 hearing (air)

 Taste and smell (chemical receptors)

 touch (pressure)

 echolocation (ultrasound)

 electroception (electric stimuli, current and field)

 magnetoception (detect magnetism, magnetic field)

 equilibrioception (balance, acceleration)

 thermoception (temperature)

 ...

Actuators

 Wheels, legs, motors,

 Hands, grasps,

Control system

 reactive

 Subsumption

 Neural networks, evolutionary approaches

Planning

 Essential component of intelligent behavior

 Anytime planning: always ready, but improves
with time

 Cell decomposition

 Potential field

 Landmarks

 Visibility graph

Tools

 Robotic languages

 Simulators

 Robot operating systems (ROS)

Distributed computing with agents

 Agents collaborate to achieve a common goal
defined by central authority

 Autonomous agents, only local communication

 The goal is to find a solution with global
constraints

 The task: prepare an algorithm for the agents

An example: sensor network

 Limited
computational
resources

 Local
communication

 Global
constraints and
solutions

Constraint satisfaction problem

 Set of variables with their domains and
constraints on values taken by the variables

 The task: assign values to the variables satisfying
all constraints or proclaim that there is no such
an assignment

 Several applications: planning, vision, NLP,
theorem proving, scheduling

An example: find non-overlapping
frequencies for the sensors

 Three sensors

 Overlapping reach

 The task: assign non-
overlapping frequencies
to the sensors from the
domain of allowed
frequencies

An example

 Equivalent to graph
coloring

 Set of variables X={ X1, X2, X3 }

 Domain Di for each variables is {red, blue, green}

 Set of constraints { X1 ≠ X2, X1 ≠ X3, X3 ≠ X2}

Constraint satisfaction terminology

 Variable assignment

 Legal, illegal

 Solution

 Distributed constraint satisfaction: each agent is
a variable, the solution is to be found without
central control

Domain pruning algorithms

 Nodes communicate with neighbors to prune forbidden values
from their domains

 arc consistency algorithm

 Each vertex Xi with domain Di repeatedly executes the
program for each of its neighbors Xj

void revise(xi, xj) {

foreach (vi ∈ Di)
if (there is no value vj ∈ Dj such that vi is consistent with vj)

Di = Di – {vi}

}

Arc consistency

 Stop when one of domains is empty (no
solution), or no more eliminations takes place.

 If there is a single value left in each domain, we
have a solution; otherwise the result is
inconclusive: we do not know if the solution
exists.

 Algorithm terminates and is sound (the solution
if found, is correct), but it is not complete (no
guarantee that the solution will be found).

An example of domain pruning a)

 First only messages to
node X1 are efficient,
therefore X2 and X3

eliminate value red

X2={blue} X3={blue, green}

 Next X3 can eliminate
blue;

 The result is correct

An example of domain pruning b)

 As before X2 and X3

eliminate red

X2={blue} X3={blue}

 Next both X2 and X3

eliminate blue;

 Empty domain is left, so
they proclaim there is no
solution.

An example of domain pruning c), d)

 No node can eliminate any value

 Inconclusive termination

Equivalence to logic resolution

 Arc consistency is too weak, can be used as preprocessing

 Value elimination is equivalent to unit resolution in propositional
logic

 Inference rule
A1
¬(A1A2 … An)

¬(A2 … An)

 We write constraints as forbidden value combinations called
Nogoods, e.g., x1=red x2=red

x1=red
¬(x1=red x2=red)

¬(x2=red)

Hyper-resolution

 A generalization of unit resolution
A1 ∨A2 ∨ · · · ∨Am
¬(A1 ∧A1,1 ∧A1,2 ∧ · · ·)
¬(A2 ∧A2,1 ∧A2,2 ∧ · · ·)
…
¬(Am ∧Am,1 ∧Am,2 ∧ · · ·)

¬(A1,1 ∧ · · · ∧A2,1 ∧ · · · ∧Am,1 ∧ · · ·)

 Sound and complete for propositional logic

 at least one of the literals in the top disjunction A1 ∨A2 ∨ ·
· · ∨Am is true, therefore the conjunction of all the
remaining literals in the negated terms has to fail, too

Hyper-resolution algorithm

 each agent repeatedly generates new
constraints for his neighbors, notifies them of
these new constraints, and prunes his own
domain based on new constraints passed to him
by his neighbors.

 NGi is the set of all Nogoods of which agent i is
aware

 NG∗
j is a set of new Nogoods communicated from

agent j to agent i.

void reviseHR(NGi, NG∗
j) {

do {
NGi ←NGi NG∗

j
NG∗

i ← hyperresolution(NGi , Di)
if (NG∗

i ≠ {})
NGi ←NGi NG∗

i
send the Nogoods NG∗

i to all neighbours of i
if ({} ∈ NG∗

i)
stop

} while (there is a change in NGi)

}

algoritem terminates after finite number of steps

If the solution exists, the algorithms finds it

Hyper-resolution for c)

 X1 has initially the following
constraints in its Nogoods:
{x1 = red, x2 = red},
{x1 = red, x3 =red},
{x1 = blue, x2 = blue},
{x1 = blue, x3 = blue}

 X1 can be assigned values x1 = red ∨ x1 = blue.

 With hyper-resolution X1 can reason

x1 = red ∨ x1 = blue
¬(x1 = red ∧ x2 = red)
¬(x1 = blue ∧ x3 = blue)

¬(x2 = red ∧ x3 = blue)

And adds constraints {x2 = red, x3 = blue} to its Nogoods

 Similarly it adds
{x2 = blue, x3 = red} to its Nogoods

 x1 sends both Nogoods to its
neighbors x2 and x3

 x2 can reason (based on its domain, Nogoods and received
inferences)
x2 = red ∨ x2 = blue
¬(x2 = red ∧ x3 = blue)
¬(x2 = blue ∧ x3 = blue)

¬(x3 = blue)

 Based on the other received Nogood x2 constructs ¬(x3 = red)

 When both Nogoods are send to the neighbor x3, x3 generates {} and
algorithms terminates proclaiming that no solution exists.

Hyper-resolution for c)

Weaknesses of hyper-resolution

 Number of generated Nogoods can be very large

 Asynchronous and parallel processing would
generate even more Nogoods.

 The problem lies in the least-commitment nature of
these algorithms; they are restricted to removing
only provably impossible value combinations.

 The alternative is to explore a subset of the space,
making tentative value selections for variables, and
backtracking when necessary.

Heuristic search with constraints

 Centralized trial and error

 Sort variables, e.g., x1, x2, . . . , xn

 Call chooseValue(x1, {}), with values {v1, v2, . . . , vi−1} already assigned to
{x1, x2, . . . , xi−1}

Weaknesses of chronological backtracking

 Exhaustive search

 Agents work sequentially

Naïve parallel asynchronous solution

 executed by all agents in parallel and asynchronously

Correct but incomplete solution: it may not terminate, it may not
find a solution

Asynchronous backtracking

 We need stronger algorithms with ideas from before:
global order and message passing

 ABT (asynchronous backtracking)

 Agents are prioritized, messages pass from higher priority
agents to lower priority agents

 Parallel execution

 Agents instantiate their variables concurrently and send their
assigned values to the agents that are connected to them by
outgoing links. All agents wait for and respond to messages.
After each update of his assignment, an agent sends his new
assignment along all outgoing links. An agent who receives an
assignment (from the higher-priority agent of the link), tries
to find an assignment for its variable that does not violate a
constraint with the assignment it received

ABT communication

 Agent send messages ok?

 Agents stores received values into his data structure
agent_view

 agent checks if his current assignment is consisted with
his agent_view.

 If it is, the agent does nothing, otherwise it searchers for
a new consistent value

 If the agent finds it, it assigns the found value to a
variable and sends ok? message to all connected lower
priority agents

 If the agent does not find it, it starts backtracking

ABT - backtracking

 The backtrack operation is executed by sending a Nogood
message.

 Nogood is an inconsistent partial assignment (assignments of
specific values to some of the variables that together violate
the constraints on those variables)

 Nogood consists of Ai’s agent_view

 The Nogood is sent to the agent with the lowest priority
among the agents whose assignments are included in the
inconsistent tuple in the Nogood.

 Agent Ai who sends a Nogood message to agent Aj assumes
that Aj will change its assignment. Therefore, Ai removes from
his agent_view the assignment of Aj and tries to find an
assignment for Aj’s variable that is consistent with the updated
agent_view.

ABT properties

 Greedy hyper-resolution

 agents make tentative choices of a value for
their variables, only generate Nogoods that
incorporate values already generated by the
agents above them in the order,

 communicates new values only to some agents
and new Nogoods to only one agent.

ABT communication

ABT check consistency

ABT backtracking

ABT for c)

 Priority x1, x2, x3

 They initially all start with a
random value, e.g., all “blue”

 x1 informs x2 and x3, x2 informs x3

x2 adds to its agent_view {x1=blue}, x3 adds {x1=blue, x2=blue}.

 x2 and x3 have to check consistency with their own value

 X2 detects conflict, modifies its value to “red” and informs x3

 In that time x3 detects conflict , modifies its value to “red”, informs no one

 x3 receives second message from x2 and modifies its agent_view to {x1 =
blue, x2 = red}.

Asynchronous
backtracking for c)

 x3 cannot find consistent value
so using hyper-resolution it
generates Nogood {x1 = blue, x2 = red}

 Sends this Nogood to x2, because of lowest
priority in Nogood

 Now x2 cannot find consistent values and generates Nogood {x1 = blue} and
sends it to x1.

 x1 detects inconsistency, modifies its value to “red” and informs x2 and x3

 As before, x2 modifies its value to blue, x3 cannot find consistent value and
generates Nogood {x1 = red, x2 = blue},

 After that x2 generates Nogood {x1 = red} and sends it to x1

 Now x1 has Nogood {x1 = blue} and {x1 = red}, uses hyper-resolution to generate
Nogood {}. Algorithm terminates by proclaiming that no solution exists.

Distributed Optimization

 agents shall, in a distributed fashion, optimize a global
objective function

 We illustrate distributed path planning in directed graph
with n nodes and m edges

 edge (a,b) has assigned a cost c(a,b);

 objective: find a minimal cost path from the starting node s
to any of the goal nodes t ∈ T.

 Applications: transport, telecommunications, planning

 Difference to standard algorithms (Dijkstra, Bellman-Ford)
is a distributed approach (agents communicate only locally,
each agent contributes to the globally optimal solution)

Asynchronous dynamic programming

 dynamic programming (incremental divide and conquer)

 if node x lies on a shortest path from s to t, then the
portion of the path from s to x (and from x to t) must also
be the shortest paths between s and x (x and t

 the shortest distance from any node i to the goal node t is
represented with h∗(i).

 Shortest path from i to t via neighboring node j
f ∗(i, j) = c(i, j)+h∗(j)

 Shortest path from i via arbitrary neighboring node

h∗(i) = minj f ∗(i, j)

Algorithm details

 Every node i stores a value h(i), as an approximation
to h∗(i)

 Initialization, each h(i)=∞,

 During execution, the h(i) values decrease and
converge to the h∗(i)

 Convergence takes one step for every node on the
shortest path

 Weakness: we need an agent for every node

Pseudo code ADP for shortest path
executed on every node

ADP 1/4

ADP 2/4

ADP 3/4

ADP 4/4

LRTA∗

 Algorithm LRTA∗ (learning real-time A∗) uses one
or more agents

 Heuristic search with improved heuristic

 Initialize: h(i)=0 (or any better informed
admissible heuristics)

 Agent repeatedly executes an algorithm
improving h(i)

 An example: a single agent execution

Pseudo code of LRTA*

An example:

One LRTA* agent 1/4

One LRTA* agent 2/4

One LRTA* agent 3/4

One LRTA* agent 4/4

LRTA*(2) (two agents) 1/3

LRTA*(2) (two agents) 2/3

LRTA*(2) (two agents) 3/3

Multiagent technologies

 Extensions to asynchronous backtracking

 Constraint satisfaction optimization

 Learning agents

 Game theory (cooperative and non-cooperative
games

An exercise: simulate an execution of
ADP and LRTA*

