
Intelligent agents

University of Ljubljana, Faculty of Computer and Information Science

Prof Dr Marko Robnik-Šikonja,
Intelligent Systems, January 2020

Contents

 types of agents and agent architectures

 multiagent learning

 distributed constraint satisfaction

 distributed shortest path finding

Literature

Yoav Shoham, Kevin Leyton-Brown: Multiagent
Systems: Algorithmic, Game-Theoretic, and Logical
Foundations. Cambridge University Press, 2009

This lecture is only a teaser, we cover part of
Chapters 1 and 2, but things get useful with game
theory.

http://www.masfoundations.org/download.html

Some terminology

 agent: many definitions, many areas

 Intelligent agent: autonomous entity which
observes and acts upon an environment and
directs its activity towards achieving goals

 Biological, artificial

 Software agents, intelligent agents

 Types and features

 Agent architectures

 A fundamental concept in intelligent systems

Agent

 Control system

 Sensors

 Actuators

 Environment

 Autonomous: acts
independently and makes
its own decisions

 Social ability: can interact
with other agents

 Reactivity: reacts to stimuli

 Proactivity: pursues its own
goals and acts in its own
(self-)interest

Multiagent systems

 Distributed program solving

 autonomous,

 flexible,

 collectively organized actions

 (goal oriented).

 Examples: drones, kilobots, helicopters, boats
etc, see any of the videos on this topic:
an example

https://www.theguardian.com/technology/2015/sep/18/robot-swarms-drone-scientists-hive-mentality

Interactive environment

 agent percepts information

 actions affect the environment

 internet, game playing, robotics (e.g., robo-
soccer)

Autonomous and flexible

 Without explicit directives

 Control

 Model of the environment

 (learning from experience)

 Responsiveness,

 Planning, goal oriented

Collective actions

 Interactions with agents and humans

 Goal oriented cooperation: strategies,
negotiation, specialization

 Distributed, asynchronous

 Objects and agents

Applications

 Production

 Automatic process control

 Telecommunications

 Information management

 e-business

 Interactive games

 Services

 …

Types of agents

 reactive agents

 collaborative agents

 interface agents

 mobile agents

 information-gathering agents

 hybrid agents

Reactive agents

 Response according to pre-specified rules

 Mail sorter, spam filter, calendar management

 Learning and revision of rules

Goal oriented agents

 Following the goal

 Planning and search

 Tickets, products

Utility based agents

 Utility functions

 Goals and utility maximization, Multiobjective
decision making

 Rationality (e.g., in games one can loose on
purpose)

 Kahneman, Tversky: (A. 100% 3000, B. 80% 4000
C. 20 % 4000 D. 25% 3000),

Interface agents

 Personal assistants,

 Learning

 Tutoring systems, preference learning in search

Mobile agents

 Physical and virtual mobility

 virus, supervision program

Information-gathering agents

 Internet, intranet, mail

 Precision, recall

 Learning

 Noisy data, data relevance

Collaborative agents

 Weakly interactive agents (ants, genetic
algorithms)

 redundancy, parallelism

Agent architecture

 a blueprint for software agents and intelligent
control systems, depicting the arrangement of
components

Subsumption architecture

 Brooks, 1985,

 intelligence without representation

 Multilevel

 Each level follows its own goal

 Higher levels can block lower levels

 Each level contains its own rules, e.g., if-then
rules

 Adding new levels is easy

 Debugging is hard

BDI architecture

 BDI (Belief Desire Intention)

 planning

 Bold and cautious

Blackboard architecture

 Sharing common work area

 Specialization

 Coordination

 Threads

Mobile architecture

 Agent-based
modeling software
(many frameworks)

 Early example:
Aglets, IBM 1990

 Java, serialization,
sandbox

JADE

 JAVA Agent DEvelopment Framework

 an open source platform for peer-to-peer agent
based applications

 conforms to FIPA standard (Foundation for
Intelligent Physical Agents)

http://www.fipa.org/

Horizontal and vertical architectures

Environment

 Deterministic

 Nondeterministic

Learning agents

 Learning is an adaptation

 Multiagent learning

 Centralized

 Distributed

Robotic agents

 Complexity of real-world environment

 Risk management

 Industrial robots

 Robot explorers (Mars, autonomy, moving
around, insects)

Robotics : Intelligent Systems view

 Testbed for intelligent systems

Taxonomy

 fixed (industrial, robotic hand
with several degrees of freedom)

 legs (1,2,4,6,8)

Taxonomy

 Wheels

 Underwater and amphibious (fish, crabs, worms)

Taxonomy

 Airborne (drones, quadropters, satellites)

 Polymorphic, swarms

 Physical and softbots

Sensors

 vision (electromagnetic waves)

 hearing (air)

 Taste and smell (chemical receptors)

 touch (pressure)

 echolocation (ultrasound)

 electroception (electric stimuli, current and field)

 magnetoception (detect magnetism, magnetic field)

 equilibrioception (balance, acceleration)

 thermoception (temperature)

 ...

Actuators

 Wheels, legs, motors,

 Hands, grasps,

Control system

 reactive

 Subsumption

 Neural networks, evolutionary approaches

Planning

 Essential component of intelligent behavior

 Anytime planning: always ready, but improves
with time

 Cell decomposition

 Potential field

 Landmarks

 Visibility graph

Tools

 Robotic languages

 Simulators

 Robot operating systems (ROS)

Distributed computing with agents

 Agents collaborate to achieve a common goal
defined by central authority

 Autonomous agents, only local communication

 The goal is to find a solution with global
constraints

 The task: prepare an algorithm for the agents

An example: sensor network

 Limited
computational
resources

 Local
communication

 Global
constraints and
solutions

Constraint satisfaction problem

 Set of variables with their domains and
constraints on values taken by the variables

 The task: assign values to the variables satisfying
all constraints or proclaim that there is no such
an assignment

 Several applications: planning, vision, NLP,
theorem proving, scheduling

An example: find non-overlapping
frequencies for the sensors

 Three sensors

 Overlapping reach

 The task: assign non-
overlapping frequencies
to the sensors from the
domain of allowed
frequencies

An example

 Equivalent to graph
coloring

 Set of variables X={ X1, X2, X3 }

 Domain Di for each variables is {red, blue, green}

 Set of constraints { X1 ≠ X2, X1 ≠ X3, X3 ≠ X2}

Constraint satisfaction terminology

 Variable assignment

 Legal, illegal

 Solution

 Distributed constraint satisfaction: each agent is
a variable, the solution is to be found without
central control

Domain pruning algorithms

 Nodes communicate with neighbors to prune forbidden values
from their domains

 arc consistency algorithm

 Each vertex Xi with domain Di repeatedly executes the
program for each of its neighbors Xj

void revise(xi, xj) {

foreach (vi ∈ Di)
if (there is no value vj ∈ Dj such that vi is consistent with vj)

Di = Di – {vi}

}

Arc consistency

 Stop when one of domains is empty (no
solution), or no more eliminations takes place.

 If there is a single value left in each domain, we
have a solution; otherwise the result is
inconclusive: we do not know if the solution
exists.

 Algorithm terminates and is sound (the solution
if found, is correct), but it is not complete (no
guarantee that the solution will be found).

An example of domain pruning a)

 First only messages to
node X1 are efficient,
therefore X2 and X3

eliminate value red

X2={blue} X3={blue, green}

 Next X3 can eliminate
blue;

 The result is correct

An example of domain pruning b)

 As before X2 and X3

eliminate red

X2={blue} X3={blue}

 Next both X2 and X3

eliminate blue;

 Empty domain is left, so
they proclaim there is no
solution.

An example of domain pruning c), d)

 No node can eliminate any value

 Inconclusive termination

Equivalence to logic resolution

 Arc consistency is too weak, can be used as preprocessing

 Value elimination is equivalent to unit resolution in propositional
logic

 Inference rule
A1
¬(A1A2 … An)

¬(A2 … An)

 We write constraints as forbidden value combinations called
Nogoods, e.g., x1=red  x2=red

x1=red
¬(x1=red  x2=red)

¬(x2=red)

Hyper-resolution

 A generalization of unit resolution
A1 ∨A2 ∨ · · · ∨Am
¬(A1 ∧A1,1 ∧A1,2 ∧ · · ·)
¬(A2 ∧A2,1 ∧A2,2 ∧ · · ·)
…
¬(Am ∧Am,1 ∧Am,2 ∧ · · ·)


¬(A1,1 ∧ · · · ∧A2,1 ∧ · · · ∧Am,1 ∧ · · ·)

 Sound and complete for propositional logic

 at least one of the literals in the top disjunction A1 ∨A2 ∨ ·
· · ∨Am is true, therefore the conjunction of all the
remaining literals in the negated terms has to fail, too

Hyper-resolution algorithm

 each agent repeatedly generates new
constraints for his neighbors, notifies them of
these new constraints, and prunes his own
domain based on new constraints passed to him
by his neighbors.

 NGi is the set of all Nogoods of which agent i is
aware

 NG∗
j is a set of new Nogoods communicated from

agent j to agent i.

void reviseHR(NGi, NG∗
j) {

do {
NGi ←NGi NG∗

j
NG∗

i ← hyperresolution(NGi , Di)
if (NG∗

i ≠ {})
NGi ←NGi NG∗

i
send the Nogoods NG∗

i to all neighbours of i
if ({} ∈ NG∗

i)
stop

} while (there is a change in NGi)

}

algoritem terminates after finite number of steps

If the solution exists, the algorithms finds it

Hyper-resolution for c)

 X1 has initially the following
constraints in its Nogoods:
{x1 = red, x2 = red},
{x1 = red, x3 =red},
{x1 = blue, x2 = blue},
{x1 = blue, x3 = blue}

 X1 can be assigned values x1 = red ∨ x1 = blue.

 With hyper-resolution X1 can reason

x1 = red ∨ x1 = blue
¬(x1 = red ∧ x2 = red)
¬(x1 = blue ∧ x3 = blue)

¬(x2 = red ∧ x3 = blue)

And adds constraints {x2 = red, x3 = blue} to its Nogoods

 Similarly it adds
{x2 = blue, x3 = red} to its Nogoods

 x1 sends both Nogoods to its
neighbors x2 and x3

 x2 can reason (based on its domain, Nogoods and received
inferences)
x2 = red ∨ x2 = blue
¬(x2 = red ∧ x3 = blue)
¬(x2 = blue ∧ x3 = blue)

¬(x3 = blue)

 Based on the other received Nogood x2 constructs ¬(x3 = red)

 When both Nogoods are send to the neighbor x3, x3 generates {} and
algorithms terminates proclaiming that no solution exists.

Hyper-resolution for c)

Weaknesses of hyper-resolution

 Number of generated Nogoods can be very large

 Asynchronous and parallel processing would
generate even more Nogoods.

 The problem lies in the least-commitment nature of
these algorithms; they are restricted to removing
only provably impossible value combinations.

 The alternative is to explore a subset of the space,
making tentative value selections for variables, and
backtracking when necessary.

Heuristic search with constraints

 Centralized trial and error

 Sort variables, e.g., x1, x2, . . . , xn

 Call chooseValue(x1, {}), with values {v1, v2, . . . , vi−1} already assigned to
{x1, x2, . . . , xi−1}

Weaknesses of chronological backtracking

 Exhaustive search

 Agents work sequentially

Naïve parallel asynchronous solution

 executed by all agents in parallel and asynchronously

Correct but incomplete solution: it may not terminate, it may not
find a solution

Asynchronous backtracking

 We need stronger algorithms with ideas from before:
global order and message passing

 ABT (asynchronous backtracking)

 Agents are prioritized, messages pass from higher priority
agents to lower priority agents

 Parallel execution

 Agents instantiate their variables concurrently and send their
assigned values to the agents that are connected to them by
outgoing links. All agents wait for and respond to messages.
After each update of his assignment, an agent sends his new
assignment along all outgoing links. An agent who receives an
assignment (from the higher-priority agent of the link), tries
to find an assignment for its variable that does not violate a
constraint with the assignment it received

ABT communication

 Agent send messages ok?

 Agents stores received values into his data structure
agent_view

 agent checks if his current assignment is consisted with
his agent_view.

 If it is, the agent does nothing, otherwise it searchers for
a new consistent value

 If the agent finds it, it assigns the found value to a
variable and sends ok? message to all connected lower
priority agents

 If the agent does not find it, it starts backtracking

ABT - backtracking

 The backtrack operation is executed by sending a Nogood
message.

 Nogood is an inconsistent partial assignment (assignments of
specific values to some of the variables that together violate
the constraints on those variables)

 Nogood consists of Ai’s agent_view

 The Nogood is sent to the agent with the lowest priority
among the agents whose assignments are included in the
inconsistent tuple in the Nogood.

 Agent Ai who sends a Nogood message to agent Aj assumes
that Aj will change its assignment. Therefore, Ai removes from
his agent_view the assignment of Aj and tries to find an
assignment for Aj’s variable that is consistent with the updated
agent_view.

ABT properties

 Greedy hyper-resolution

 agents make tentative choices of a value for
their variables, only generate Nogoods that
incorporate values already generated by the
agents above them in the order,

 communicates new values only to some agents
and new Nogoods to only one agent.

ABT communication

ABT check consistency

ABT backtracking

ABT for c)

 Priority x1, x2, x3

 They initially all start with a
random value, e.g., all “blue”

 x1 informs x2 and x3, x2 informs x3

x2 adds to its agent_view {x1=blue}, x3 adds {x1=blue, x2=blue}.

 x2 and x3 have to check consistency with their own value

 X2 detects conflict, modifies its value to “red” and informs x3

 In that time x3 detects conflict , modifies its value to “red”, informs no one

 x3 receives second message from x2 and modifies its agent_view to {x1 =
blue, x2 = red}.

Asynchronous
backtracking for c)

 x3 cannot find consistent value
so using hyper-resolution it
generates Nogood {x1 = blue, x2 = red}

 Sends this Nogood to x2, because of lowest
priority in Nogood

 Now x2 cannot find consistent values and generates Nogood {x1 = blue} and
sends it to x1.

 x1 detects inconsistency, modifies its value to “red” and informs x2 and x3

 As before, x2 modifies its value to blue, x3 cannot find consistent value and
generates Nogood {x1 = red, x2 = blue},

 After that x2 generates Nogood {x1 = red} and sends it to x1

 Now x1 has Nogood {x1 = blue} and {x1 = red}, uses hyper-resolution to generate
Nogood {}. Algorithm terminates by proclaiming that no solution exists.

Distributed Optimization

 agents shall, in a distributed fashion, optimize a global
objective function

 We illustrate distributed path planning in directed graph
with n nodes and m edges

 edge (a,b) has assigned a cost c(a,b);

 objective: find a minimal cost path from the starting node s
to any of the goal nodes t ∈ T.

 Applications: transport, telecommunications, planning

 Difference to standard algorithms (Dijkstra, Bellman-Ford)
is a distributed approach (agents communicate only locally,
each agent contributes to the globally optimal solution)

Asynchronous dynamic programming

 dynamic programming (incremental divide and conquer)

 if node x lies on a shortest path from s to t, then the
portion of the path from s to x (and from x to t) must also
be the shortest paths between s and x (x and t

 the shortest distance from any node i to the goal node t is
represented with h∗(i).

 Shortest path from i to t via neighboring node j
f ∗(i, j) = c(i, j)+h∗(j)

 Shortest path from i via arbitrary neighboring node

h∗(i) = minj f ∗(i, j)

Algorithm details

 Every node i stores a value h(i), as an approximation
to h∗(i)

 Initialization, each h(i)=∞,

 During execution, the h(i) values decrease and
converge to the h∗(i)

 Convergence takes one step for every node on the
shortest path

 Weakness: we need an agent for every node

Pseudo code ADP for shortest path
executed on every node

ADP 1/4

ADP 2/4

ADP 3/4

ADP 4/4

LRTA∗

 Algorithm LRTA∗ (learning real-time A∗) uses one
or more agents

 Heuristic search with improved heuristic

 Initialize: h(i)=0 (or any better informed
admissible heuristics)

 Agent repeatedly executes an algorithm
improving h(i)

 An example: a single agent execution

Pseudo code of LRTA*

An example:

One LRTA* agent 1/4

One LRTA* agent 2/4

One LRTA* agent 3/4

One LRTA* agent 4/4

LRTA*(2) (two agents) 1/3

LRTA*(2) (two agents) 2/3

LRTA*(2) (two agents) 3/3

Multiagent technologies

 Extensions to asynchronous backtracking

 Constraint satisfaction optimization

 Learning agents

 Game theory (cooperative and non-cooperative
games

An exercise: simulate an execution of
ADP and LRTA*

